CASL Script Language Guide

ATTACHMATE.

INFOCONNECT

for Windows 95 and Windows NT

= Attachmate.

8230 Montgomery Road ¢ Cincinnati, OH 45236
Sales Information (513) 745-0500 « Fax (513) 745-0327

INFOConnect
CASL Script Language Guide

Version 2.0

© 1997 Attachmate Corporation. All rights reserved. Printed in the United States of America.

Attachmate Corporation has prepared this document for use by Attachmate personnel, licensees, and customers. The information
contained herein is the property of Attachmate and shall not be copied, photocopied, translated, or reduced to any electronic or
machine readable form, either in whole or in part, without prior written approval from Attachmate.

Attachmate reserves the right to, without notice, modify or revise all or part of this document and/or change product features or
specifications and shall not be responsible for any loss, cost, or damage, including consequential damage, caused by reliance on these
materials.

Attachmate, EXTRA!, and INTERCOM are registered trademarks and CASL, PEP, and QuickPad are trademarks of Attachmate
Corporation. VT is a trademark of Digital Equipment Corporation. Microsoft, Windows, and Windows NT are registered trademarks of
Microsoft Corporation. INFOConnect is a trademark and MAPPER and Unisys are registered trademarks of Unisys Corporation.
WordStar is a registered trademark of WordStar International Inc.

All other trademarks and registered trademarks are property of their respective owners.

Contents

Chapter 1

About This Guide XV
AUIENCE . . . o XVi
Documentation Conventions.., XVii
Abbreviations. e XX
Related Documentation. XXi
Introducing CASL 1
About CASL. 2
Why Use MacCroS?. e e e e 3
Creating and Editing CASLMacros.covun.. 4
Creatinga CASLMacCro, 4
Typesof Macros 6
The Structure of Macros i 7
CoMmMmMENtS. . .. 7
Declarations 7
Directives e 8
The ElementsofaMacro 9
Statements 9
Variables. 9
Constants 9
EXpressions 9
Labels. 9
Proceduresand Functions 9
Keywords 10

Contents

Chapter 1 Introducing CASL, continued

DesigningaMacCro. vttt e e 11
Sample: ABasic Logon Macro. 12
Describing the Purpose ofthe Macro 12
Documenting the Macro's History 13
DisplayingaMessageoov ettt 13
Using StringConstants, 13
Establishing Communications with MCI Mail. 14
Waiting for a Prompt fromthe Host. 14
Sending the Logon Sequence. 14
Using CASL Predeclared Variables. 14
Using Keywords 15
EndingtheMacro 15
Using Comments and Blank Lines 15
Sample: Verifying the Host Connection. 16
Declaring Variables 17
Initializing Variables. 18
Performing a Task While a Conditionis True 18
Using a Relational Expression to Control the Process18
Waiting for a Character String. 18
Checking ifa TimeoutOccurred 19
Testing the Outcome with a Boolean Expression 19
Branching to a Different Macro Location............... 19

Continuing the Logon if the Connection Is Established. . . .20
Incrementing a Counter Using an Arithmetic Expression . .20

Alerting the User if the Connection Failed. 20
Disconnecting the Session 21
Using Indentation 21
Using Braces with a Statement Group 22
Sample: Controlling the Entire Logon Process 23
Performing a Task while Multiple Conditions Are True25
Watching for One of Several Host Responses 25
Soundingan Alarm 27
Using the Line-Continuation Sequence. 27
Compilinga CASLMacro. 29
Runninga CASLMacro. ...t 30

Contents

Chapter 2 Understanding the Basics of CASL 31
Statements 32
Line Continuation Characters 32
COMMENTS. . .. 33
Block Comments. 33
Line Comments.t 33
Identifiers. 35
Data TYPeS . .ot 36
Constants 37
IntegerConstants 37
RealConstants., 38
StringConstants 39
BooleanConstants 43
EXPresSSIONS. . oo 44
Orderof Evaluation. 45
Arithmetic EXpressions, 46
String EXPressions 50
String Concatenation Operation 50
Relational EXpressionso i, 51
Boolean EXpressions. 53
Type CONVErSIONot 54
Converting an Integertoa String 54
Convertinga Stringtoaninteger 54
Converting an Integer to a Hexadecimal String 54
Converting an ASCII Value to a Character String. 55
Compiler DIreCtives oot 56
Suppressing Label Information. 56
Suppressing Line Number Information 56
Trappingan Error 56
Including an External File 57
Defining a Macro Description 57
Reserved Keywords 58
Chapter 3 Variables, Arrays, Procedures, and Functions 63
Variables 64
Predefined Variables. 64
User-Defined Variables. 64
Explicit Variable Declarations 65
Single-Variable Declarations. 65
Multiple-Variable Declarations 65
Initializers 66
Public and External Variables. 66

Contents

Vi

Chapter 3

Chapter 4

Variables, Arrays, Procedures, and Functions, continued

Implicit Variable Declarations. 67
AT Y S, o 68
Single-Dimensional Arrays i 68
Multidimensional Arrays, 68
Arrays with Alternative Bounds 69
Procedures. 70
Procedure Argument ListS. 70
Forward Declarations for Procedures 71
External Procedures i 72
Functions 73
Function ArgumentLists 73
Forward Declarations for Functions. 74
External Functions. 74
Scope RuUles. 75
Local Variables 75
Global Variables 75
Default Variable Initialization Values. 75
Labels 76
Calling DLLFunctions, 77
Declaring DLL Functions. 77
Parameter and Return Values. 78
Non-Supported Parameters and Return Values 80
Writing Windows DLLS i 80
Interacting with the Host, Users, and Other Macros 83
Interacting withthe Host 84
Waiting for a Character String. 84
Watching for Conditionsto Occur 85
Setting and Testing Time Limits 86
Sendinga ReplytotheHost 86
CommunicatingwithaUser. 87
Displaying Information. 87
Requesting Information. 88
Invoking Other Macros. i 90
Chaining to AnotherMacro 90
Calling Another Macro.t 90
Passing Arguments 90
Exchanging Variables i . 91

Contents

Chapter 4

Chapter 5

Chapter 6

Interacting with the Host, Users, and Other Macros,

Trapping and Handling Errors
Enabling Error Trappingo oo o
Testing if an Error Occurred
Checking the Type of Error.
Checking the Error Number

Functional Purpose of CASL Elements

OVEIVIEW . . o oo
Date and Time Operations
ErrorControl
File Input/Output Operations.
HostInteraction.
Macro Management i
Mathematical Operations
PrinterControl
Program Flow Control
Session Management
String Operations
Type Conversion Operations.
Window Control.
Miscellaneous Elements

CASL Language

How CASL Elements Are Documented.
abs (function).
activate (statement).
activatesession (statement).
alarm (statement)
alert (statement)
arg (function)
asc (function).
assume (statement).
backups (module variable)
binary (function).
bitstrip (function)
busycursor (statement) L
bye (statement)
capture (statement) L
case...endcase (statments)
chain (statement). L

continued

Vii

Contents

viii

Chapter 6

CASL Language, continued

chdir (statement) 137
choice (systemvariable) 138
chr(function) 139
cksum (function). 140
class (function). 141
clear (statement) 142
close (statement) 143
cls(statement) 144
compile (statement) 145
connected (function) 146
copy (statement) 147
count (function) 148
crec (function) 149
curday (function) 150
curdir (function) 151
curdrive (function) 152
curhour (function). 153
curminute (function) 154
curmonth (function) 155
cursecond (function) 156
curyear (function). 157
date (function) 158
definput (systemvariable) 159
defoutput (systemvariable), .. 160
dehex (function) 161
delete (statement) 162
delete (function) 163
description (system variable). 164
destore (function). 165
detext (function) 166
device (systemvariable) L 167
dialogbox...enddialog (statements) 168
display (systemvariable) o 175
do(statement) 176
drive (statement) 177
end (statement) 178
enhex (function) 179
enstore (function). 180
entext (function) 181
environ (function) 182
eof (function) 183
eol (function) 184
errclass (systemvariable), 186

Contents

Chapter 6

CASL Language, continued

errno (systemvariable) 187
error (function). e 188
exists (function) 189
exit(statement) 190
false (constant) i 191
filefind (function) 192
filesize (function) 194
fncheck (function) 195
fnstrip (function). 196
footer (systemvariable). o o L 198
for..next (statements) 199
freemem (function) 201
freetrack (function) 202
func...endfunc (function declaration) 203
genlabels (compiler directive) 205
genlines (compiler directive) 206
get(statement) 207
go(statement) 208
gosub...return (statements) 209
goto (statement) 210
grab (statement) 211
halt (statement) 212
header (system variable). 213
hex (function). 214
hide (statement) 215
hideallquickpads (statement). 216
hidequickpad (statement) 217
hms (function) 218
homedir (systemvariable). 219
if...then...else (statements) 220
include (compiler directive) 222
inject (function) 223
inkey (function) 224
input (statement) 226
inscript (function) 227
insert (function) 228
instr (function) 229
intval (function) 230
jump (statement) 231
keys (systemvariable). 232
label (statement) 233
left (function) 234
length (function). 235

Contents

Chapter 6

CASL Language, continued

loadquickpad (statement). 236
loc(function) 237
lowcase (function) 238
lprint (statement) 239
match (systemvariable). 240
max (function) 241
maximize (statement). 242
mid (function) 243
min (function) 244
minimize (statement) 245
mkdir (statement). 246
mkint (function) 247
mkstr (function) 248
move (Statement). 249
name (function) 250
netid (systemvariable). o oo L 251
new (statement). 252
nextchar (function) 253
nextline (statement) 254
nextline (function). 256
null (function) 258
octal (function) 259
off (constant) 260
ON (CONSEAaNL) . ..ot 261
online (function) 262
ontime (function) 263
open (statement) 264
pack (function) 265
pad (function). 266
passchar (systemvariable) 268
password (systemvariable). 269
perform (statement) 270
pop (statement) 271
press (statement). 272
print (statement). 274
printer (systemvariable) L 275
proc...endproc (procedure declaration) 276
protocol (system variable) 279
put (statement). 280
quit (statement) 281
quote (function) 282
read (statement). 283
read line (statement) 284

Contents

Chapter 6

CASL Language, continued

receive (statement) 285
rename (statement). e 286
repeat...until (statements), 287
reply (statement) e 288
request (statement) 289
restore (statement) 290
return (statement) 291
right (function) 292
rmdir (statement). 293
run (statement) 294
save (statement) 295
script (systemvariable) 296
scriptdesc (compiler directive). 297
secno (function). 298
seek (statement) 299
send (statement) 300
sendbreak (statement) 301
session (function) 302
sessname (function) 303
sessno (function) 304
show (statement). 305
showquickpad (statement) 306
Size (Statement). 307
slice (function) 308
startup (systemvariable). o L 309
str(function) 310
strip (function) 311
stroke (function). 312
subst (function) 313
systime (function) 314
tabwidth (module variable) 315
terminal (systemvariable) 316
terminate (statement) 317
time (function) 318
timeout (systemvariable) 319
trace (statement) 320
track (statement) 321
track (function). 324
trap (compiler directive). 326
true (constant) 327
unloadallquickpads (statement). 328
unloadquickpad (statement) 329
upcase (function). 330

Xi

Contents

Xii

Chapter 6

Chapter 7

Appendix A

CASL Language, continued

userid (systemvariable). L 331
val (function) e 332
version (function) 333
wait (statement) 334
watch...endwatch (statements) 338
weekday (function). 341
while...wend (statements), 342
winchar (function). 343
winsizex (function) 344
winsizey (function) 345
winstring (function). 346
winversion (function) 347
write (statement) 348
write line (statement) 349
Xpos (function) 350
ypos (function) 351
zoom (statement). 352
Connection, Terminal, and File Transfer Tools 353
The Tool Concept ... i i e 354
Connection TOOIS. 355
Terminal Tools. 356
File Transfer TooIs. o 357
Using Tool Variables 358
Connection Tool Variables. 359
InterCom Variables 360
PEP Variables 364
Error Messages 369
Classesof ErrorMessageooviiii ... 370
Internal Errors 371
Compiler Errors oo e 372
INPU/OULPUL EITOrSot e 380
Mathematical and Range Errors 383
State Errors 384
Critical Errorso oo 385
Macro Execution Errors 386
Compatibility Errors 389
Upload/Download Errors 390
Missing Information Errors. 391

Contents

Appendix A

Error Messages, continued

Multiple Document Interface Errors. 392
Emulator or File Transfer Protocol Errors 393
DLL Errors. ..o 394
Generic Module Errors 395
File Transfer Errorso e 396
Navigation Errors. 398
Index 399

Xiii

About This Guide

The INFOConnect CASL Script Language Guide is designed to
assist you in creating and implementing macros that enhance
communication between your PC and host. It introduces CASL™,
the Common Accessory Script Language. This guide explains how
to use CASL with Accessory Manager.

This preface contains the following sections:

Audience e Xvi
Documentation Conventions XVii
Abbreviations XX
Related Documentation XX1

XV

About This Guide

Audience

Xvi

Audience

This guide is written for Accessory Manager users who want to
write CASL macros. It begins with conceptual information so that
the inexperienced programmer can learn the hows and whys of
writing macros. The guide provides reference material on
implementing each macro element. This reference material also
includes details for the sophisticated application developer.

If you are new to writing macros, you may benefit from first
reading Chapter 1, “Introducing CASL.”

Before reading this guide, you should understand general concepts
for Accessory Manager.

About This Guide

Documentation Conventions

The following documentation conventions are used in this guide:

= All text that you type on a screen or messages and prompts that
appear on the screen are displayed in this type style

This type style also is used for CASL macro text.

» Square brackets ([]) indicate that the argument is optional.
The following example illustrates the notational use of square
brackets:

alarm [integer]
In this example, the argument integer is optional.

= Words or characters in braces ({ }) represent multiple
arguments from which to choose. The choices are separated by
a vertical line, as shown in the following example:

genlines {on | off}

In this example, there are two choices: on and off . These are
the only possible choices.

= An ellipsis (...) can have one of several meanings.

O Ifthe ellipses occurs at the end of a line, it indicates that the
line is continued on the following line, or that the code
continues but no additional data is shown, as in these

examples:
[edittext X, ¥, w, h, init_text, ...
str_result_var [[options 1]

if arg(1) = "barkley" then ...

0 If the ellipses occurs on a line of its own, it indicates that
intervening lines of code have been omitted, as in the
following example:

done = false
while not done

wend

Documentation Conventions XVii

About This Guide

0 If the ellipses follows an item in italics, you can repeat the
previous item one or more times, as in the following example:

digit
In this example, you can have just one digit , or you may
have multiple digits. You must have at least one digit.

0 If the ellipses follows an item in square brackets, you can
repeat the item zero or more times, as in the following
example:

[, var] ...

In this example, var is optional. If you choose to use var as
an argument, the ellipsis indicates that you can have
multiple variables as arguments.

= [talic type is used in the following situations:
0 To show emphasis, as in, “Do not use the Copy command.”

0 To show that a word is a placeholder that stands for
something else, as in the following example:

delete filename

In this case, you enter the actual file name rather than the
word filename.

The following are some common placeholders:
char (Integer)—The integer ASCII value of a character

expression (Any)—More than one type of expression can
be used here. Read the text to determine which is suitable.

filename (String)—A legal file specification. You can use
full path names, as well as wild card characters (where
appropriate.

filenum (Integer)—A file number. Range 1-8. These
expressions are usually optional and must be preceded by a
pound sign (#) if they are specified.

time_expr (Integer)—An amount of time. You can use any
numeric expression followed by ticks, seconds, minutes, or
hours. If you do not specify a keyword, seconds is assumed.

» The word PC refers to any personal computer running
Windows® 95 or Windows NT®,

XViii Documentation Conventions

About This Guide

» The word host refers to any mainframe, mini-computer, or
information hub with which the PC communicates.

= File names are shown in all capital letters, as in
INSTALL.EXE, unless a file name is part of a command. In this
situation, lowercase letters are used to show that you do not
have to enter the file name in all capitals.

Documentation Conventions XiX

About This Guide

Abbreviations

XX

Abbreviations

The following abbreviations are used in this guide.

Abbreviation Meaning

API Application Programming Interface
ASCII American Standard Code for Information Interchange
BBS Bulletin Board System

BPS Bits per second

CASL Common Accessory Script Language
CR Carriage return

CRC Cyclical redundancy check

CRI/LF Carriage-return/line-feed

DTE Data Terminal Equipment

FCC Federal Communications Commission
KB Kilobyte

About This Guide

Related Documentation

For information on Accessory Manager and the CASL Macro
Editor, refer to the online Help for Accessory Manager.

For information on Windows 95 or Windows NT, refer to the
documentation provided by Microsoft®.

Related Documentation XXi

Introducing CASL

In This Chapter

This chapter contains the following headings:

About CASL e 2
Why Use Macros? 3
Creating and Editing CASL Macros 4
Types of Macrosooi e e 6
The Structure of Macros, 7
The Elements ofa Macro 9
DesigningaMacroo i 11
Sample: A Basic Logon Macro 12
Sample: Verifying the Host Connection 16
Sample: Controlling the Entire Logon Process 23
Compilinga CASLMacrooiiiiiiinnen... 29
Runninga CASLMacro, 30

Chapter 1 Introducing CASL

About CASL

2

About CASL

CASL is a scripting language that you can use to create macros
that can interact with hosts, users, and other macros. The macros
you develop can be simple or complex. For instance, you can create
a simple macro that waits for a prompt from the host and then
replies with a user ID and password. More complex macros can
automate entire communications sessions or create custom dialog
boxes that enable users to operate a host application without
learning its commands.

While CASL is designed to simplify the process of communicating
with other computers, it is not limited to that function. CASL is a
full-featured programming language that can handle almost any
task, including complex mathematical computations and the
display of sophisticated dialog boxes.

CASL macros work with any emulator that runs within Accessory
Manager. Any limitations that are specific to a particular

emulator (such as ALC or EXTRA!® Office for Accessory Manager)
are noted throughout this guide or the Readme file for the product.

Chapter 1 Introducing CASL

Why Use Macros?

When you work in a data communication environment, you often
have to perform the same functions over and over again to
complete your daily activities. For instance, each time you open a
session with a host, you have to type your logon ID and password.

You can eliminate the manual repetition of routine tasks by using
macros to communicate with the host. You have to create and save
a macro to be able to use it, but once you have done this, you will
find it invaluable in saving time and effort in the future.

Using macros, you can do any of the following:
= Perform keystroke sequences
* Run another PC application

= Perform almost any function that can be performed using
Accessory Manager, such as loading a QuickPad

= (Create dialog boxes so that you can request user input

In addition, creating and implementing CASL macros are not
difficult tasks. Traditionally, developing applications and utilities
that run in a communications environment required a complex
programming language and an Application Programming
Interface (API) to access the host. You also had to understand the
underlying data communications link. CASL removes these
obstacles. When you write a CASL macro, you do not have to
concern yourself with the details of communication programming;
CASL handles the communication interface.

Why Use Macros? 3

Chapter 1 Introducing CASL

Creating and Editing CASL Macros

Creating a
CASL Macro

Using Learn Mode

You can create a CASL macro in two ways:

» Learn Mode—you perform the actions that you want to include
in the macro, and Accessory Manager records those actions in a
CASL macro file, which you can then edit if needed.

= CASL Macro Editor—you open the CASL Macro Editor and
write the macro using the CASL script language.

To create a CASL macro using Learn Mode, follow these steps:

With a session open, click Learn CASL Macro from the Tools
menu.

The CASL Macro Editor starts in a minimized state.
Perform the tasks that you want to include in the macro.

When you have finished, click Stop CASL Learn from the Tools
menu.

When you are prompted about saving the CASL macro, do one of
the following:

To do this Do this

Save the Click Yes, type a name for the macro in the File Name text box
CASL macro (you do not have to include a file extension), and click Save on
the Save As dialog box.

The CASL Macro Editor closes automatically.

Not save the Click No.

CASL macro . .
The CASL Macro Editor closes automatically.

If you need to edit the CASL macro, you can do so using the CASL
Macro Editor. Refer to the online Help for Accessory Manager for
detailed information.

4 Creating and Editing CASL Macros

Chapter 1 Introducing CASL

Using the CASL To create a CASL macro using the CASL Macro Editor, follow
Macro Editor these steps:

1 With a session open, click CASL Macro from the Tools menu.

2 Click New.

The CASL Macro Editor starts, displaying a window similar to the
one shown below:

jrf Macro - CASL Macro Editor =] E3
File Edit “iew Macro Help

D@ i@ 8] sl 2] |
I -

w,

1= 3
For Help, prezs F1 i

For information about using this editor, refer to the online Help.

Creating and Editing CASL Macros 5

Chapter 1 Introducing CASL

Types of Macros

6

Types of Macros

There are two main types of CASL macros:
= Online
= Offline

Online macros work while Accessory Manager is connected to a
host. Usually, these interact with the host to automate all or part
of a communications session. You can use online macros to log on
to the host, or create a custom dialog box for interacting with a
host application.

Offline macros do not interact with a host. For example, you can
use an offline macro to display a list of hosts to which a user might
want to log on.

Note: A session must be open for you to run either an online or
an offline macro.

Chapter 1 Introducing CASL

The Structure of Macros

Comments

Declarations

CASL is flexible enough to accommodate most writing styles. If
you have written computer programs before, you should be able to
retain the same style you have used in the past.

In general, the contents of a macro include such items as
comments, declarations, and directives. A comment documents a
macro; a declaration defines a variable, an array, a procedure, or
function; and a directive specifies an action to be taken.

Use comments to explain what will happen when a segment of
code is executed or to block out part of a macro that you do not
want to execute. Comments are ignored by the macro compiler and
do not take up any memory after a macro is compiled. So you can
include many comments to document the flow of a macro.

Starting your macro with a comment header is good practice. This
header should include your name, the creation date, and some
explanation of its objective. An example of this type of comment is
as follows:

-- Macro name: LOGON.XWS
-- Date: 6/24/92
-- Author: John Doe

In this example, the double hyphen is used to indicate a comment.
Chapter 2, “Understanding the Basics of CASL,” describes other
notations you can use to designate a comment.

Set up your declarations and assign values to them, if appropriate,
immediately after the comment header. This will help you keep
the declarations easy to find, as shown here:

-- Macro name: LOGON.XWS
-- Date: 6/24/92

-- Author: John Doe

integer count, access_number
count=1

access_number = NetID

The Structure of Macros 7

Chapter 1 Introducing CASL

Directives

The body of a macro, which follows the declarations, is made up of
directives, or statements, that specify actions to be taken. You can
structure your macro statements with one statement on a line,
multiple statements on a line separated by colons (:), or a series
of statements enclosed in braces ({ }). The following example
shows one macro statement on a line:

print "Hello!"

Chapter 2, “Understanding the Basics of CASL,” provides
examples of how to write statements using the alternate
structures.

To make your macro more readable and maintainable, you can
indent statements that are part of a larger construct. Indentation,
which is ignored by the compiler, is shown in the following
example of a for...next construct:

-- This segment prints 1 through 10 vertically.

integer count

for count =1 to 10
print count

next

As shown in the preceding example, you can also use blank lines to
improve program readability.

The Structure of Macros

Chapter 1 Introducing CASL

The Elements of a Macro

Statements

Variables

Constants

Expressions

Labels

Procedures and
Functions

Your macros can consist of many different kinds of language
elements. The sample macro you develop in a later section
contains examples of many of them. A brief description of the more
commonly used CASL components follows.

Statements perform such functions as assignment of values, file
input/output, file transfer, macro flow control, host interaction,
window control, and communications session management. CASL
statements are described in detail in Chapter 6, “CASL
Language.”

Variables are elements that can store data. In your macros, you
can use variables that you create and variables that are
predeclared by CASL. CASL’s predeclared variables are described
in Chapter 6, “CASL Language.”

Constants are elements that have a fixed value. Use the value
directly in your macro.

Expressions include arithmetic expressions, string expressions,
relational expressions, and boolean expressions.

Labels are named reference points in a macro. A label can be the
destination of a goto statement or it can mark the beginning of a
subroutine. Guidelines for using the label statement in a macro
are presented in Chapter 6, “CASL Language.” Label scope rules
are explained in Chapter 3, “Variables, Arrays, Procedures, and
Functions.”

Procedures and functions perform unique tasks. They differ in
that functions return a value, and procedures do not. CASL
provides built-in functions, which are predeclared. You can use
these built-in elements as well as implement your own procedures
and functions. See Chapter 6, “CASL Language,” for details.

The Elements of a Macro 9

Chapter 1 Introducing CASL

Keywords Keywords make your macro more readable. CASL keywords are
reserved for a particular use in your macro; for example,
statement names and words that bind arguments are all reserved
keywords. You cannot use keywords as names for your variables,
functions, procedures, or subroutines. Chapter 2, “Understanding
the Basics of CASL,” contains a table of the keywords reserved by
CASL.

10 The Elements of a Macro

Chapter 1 Introducing CASL

Designing a Macro

In the process of developing and implementing a more complex
macro, the following is a typical development cycle:

= Design the macro.

= Write and edit the macro.

= Compile the macro and locate any compile errors.
» Fix the errors and compile again.

* Run the macro to be sure it works.

= Correct any problems.

Before you write a macro, you should map out what you want the
macro to accomplish. This step in the development cycle is
especially important when you create macros to use with
communications programs. It is difficult to predict exactly what
another computer will do during a communication session.
Therefore, it is advisable to design your macro to handle any type
of situation that may occur.

Your macro design can be as simple as a list of steps that outline
the goals you want to accomplish. You can produce more detailed
design plans by drawing flow charts. Listing goals and drawing
flow charts are not always necessary, but they can often save you
hours of work later.

Designing a Macro 11

Chapter 1 Introducing CASL

Sample: A Basic Logon Macro

Describing the
Purpose of the
Macro

In this sample, you send a logon sequence to MCI Mail. The
example assumes that your macro will run in a trouble-free
environment, that is, it will not encounter errors or slow responses
from the host.

[* This macro shows how to display messages and
send a user ID and password to MCI Mail. */

-- Macro name: SAMPLE1.XWS
-- Created: 6/24/92 - Jane Smith

[* Display a message on the status line to tell the
user what is going on. */

message "MCI Mail auto-logon in progress"
[* Send a carriage return (CR) to get MCl's

attention and then send the logon user ID and
password. */

reply --Send aCR
wait 2 seconds -- Wait for prompt
reply userid -- Send User ID
wait 2 seconds -- Wait for prompt
reply password -- Send password

message 'MCI auto-logon complete'-- Tell the user

end -- End the macro

The macro begins with a comment describing the purpose of the
macro.

[* This macro shows how to display messages and
send a user ID and password to MCI Mail. */

This is a block comment, which is enclosed in the symbol pair /*
and */. When you start your macro with an explanatory comment,
you assist other macro writers who later need to understand your
work.

12 Sample: A Basic Logon Macro

Chapter 1 Introducing CASL

Documenting the
Macro's History

Displaying a
Message

Using String
Constants

The sample macro comment header also provides a history of the
script’s development, including the macro file name, the creation
date, and the author's name. This comment begins with a double
hyphen, which tells the macro compiler that this is a line
comment. Line comments do not require an end-of-comment
symbol.

-- Macro name: SAMPLE.XWS
-- Created: 6/24/92 - Jane Smith

After subsequent macro modifications, the header might appear as
follows:

-- Macro name: SAMPLE.XWS
-- Created: 6/24/91 - Jane Smith
-- Modified: 3/12/92 - Jane Smith
-- Modified: 7/16/92 - John Doe

The additional comments record the history of the macro
development.

The first line of code displays a message that tells the user what is
occurring. To display this type of simple message, use the
message statement.

message "MCI Mail auto-logon in progress"

As you can see in the message statement, the words that are
displayed are enclosed in quotation marks. A character string
enclosed in quotation marks is called a string constant. When you
use CASL, you must enclose all string constants with quotation
marks. You can use either double quotation marks, as shown in
the preceding example, or single quotation marks, as shown in the
script’s second message.

message 'MCI auto-logon complete’

Be sure to use the same type of beginning and ending quotation
marks.

Sample: A Basic Logon Macro 13

Chapter 1 Introducing CASL

Establishing
Communications
with MCI Mail

Waiting for a
Prompt from the
Host

Sending the Logon
Sequence

Using CASL
Predeclared
Variables

To establish communications with MCI Mail, use the reply
statement.

reply

When you use the reply statement without an argument, a
carriage return is sent to the host. This alerts the host to prompt
for a user ID.

After you send a carriage return to the host, you should wait for a
brief period to allow the host to send a prompt.

wait 2 seconds

The wait statement causes the macro to pause for two seconds to
allow the host to respond with the first prompt. The amount of
time to wait depends on your operating environment and the host.

Once you have set up the connection, you can send your user ID
and password. To do this, use two reply statements—one to send
the user ID and one to send the password. Be sure to wait for a
brief period before sending the second reply statement to allow
time for the host to send the password prompt.

reply userid
wait 2 seconds
reply password

CASL provides a rich set of predeclared variables, which include
system variables and module variables. The sample macro
contains two of the predeclared system variables: userid and
password .

userid and password are set up as system variables to make it
easy for everyone to use CASL macros and also to help maintain
security. You can define these variables from Accessory Manager
by clicking Session Preferences from the Options menu and
clicking the CASL Macro tab. You can also modify these variables
in a macro. The sample macro uses the predefined contents of the
variables to send the user ID and password to MCI Mail.

reply userid
reply password

14 Sample: A Basic Logon Macro

Chapter 1 Introducing CASL

Using Keywords

Ending the Macro

Using Comments
and Blank Lines

In the wait statement, you find the word seconds .
wait 2 seconds

This word is one of many CASL keywords that make your macro
more readable and flexible. Use the keywords only where specified
in the various language elements.

There are several ways to end a macro, depending on the reason
for its termination. The most common way is to use the end
statement, as shown in the sample macro.

The end statement brings the macro to an orderly conclusion.
Other CASL statements, such as halt , quit , and terminate
cause related macros, sessions, or Accessory Manager to end also.
These statements are discussed in detail in Chapter 6, “CASL
Language.”

Throughout the sample macro there are comments explaining
what the programming code is to accomplish. Some of the
comments are block comments, which are enclosed in the symbol
pair /* and */ .

[* Display a message on the status line to tell the
user what is going on. */

Other comments are line comments.

-- Macro name: SAMPLE.XWS
reply --Send aCR

As you can see, the line comments begin with a double dash (--).
You can use both of these commenting methods in your macro.

The sample macro also shows how to use blank lines to make a
macro more readable. You can use blank lines almost anywhere in
your macro.

Sample: A Basic Logon Macro 15

Chapter 1 Introducing CASL

Sample: Verifying the Host Connection

The previous sample macro assumed that MCI Mail responded to
the initial carriage return within the expected time frame. But
this may not always be the case. The following sample macro
shows how to verify that communications have, in fact, been
established.

[* This macro shows how to display messages and
send a user ID and password to MCI Mail. It also
verifies that the MCI Mail connection is active. */

-- Macro name:SAMPLE2.XWS

-- Created:6/24/92 - Jane Smith

-- Modified:6/25/92 - Jane Smith (Added code to
-- check for the "port:" prompt.)

[* First, define the required variable. */

integer i

[* Display a message on the status line to tell the
user what is going on. */

message "MCI Mail auto-logon in progress"

[* Try to get MCI Mail's attention by sending a
carriage return (CR) until the "port:" prompt is

received. */
i=1 -- Initialize the
-- variable to 1
while i <= 10 -- Perform while i is
-- less than or equal
--to0 10
reply --Send a CR
wait 2 seconds for "port:" -- Wait for prompt
if not timeout then -- If no timeout
goto LOGIN -- Branch to
LOGIN to
-- wait for prompts
}
i=i+1 -- Increment counter
wend

16 Sample: Verifying the Host Connection

Chapter 1 Introducing CASL

Declaring
Variables

/* Could not get MCI Mail's attention. Tell the
user and hang up. */

alert "System not responding - Logon canceled.", ok

bye -- Disconnect
end --End

label LOGIN

wait for "name:" -- First prompt
reply userid -- Send user ID
wait for "password:" -- Next prompt

reply password -- Send password

message 'MCI auto-logon complete' -- Tell the user

end -- End the macro

As in the first sample macro, this sample starts with a description
of its purpose and an outline of its history. (The comment header
is updated to reflect a modification to the original macro.) This
macro adds functionality that takes control in the event that MCI
Mail does not respond to the initial reply statement.

First the macro declares a variable that it will use as part of a
conditional expression that determines how long to perform a
task. As part of the task, it sends a carriage return to establish
communications with MCI Mail and then waits for the expected
character string from the application. If a time-out does not occur,
the macro branches to a different location to send the logon
sequence to the application. If, however, communications cannot
be established after ten carriage returns are sent, the macro alerts
the user to the failure, disconnects the session, and ends.

To declare a variable, specify a data-type identifier and a variable
name. In the sample macro, a variable named i , with a data type
of integer , is declared.

integer i

This macro uses only one variable. If your macro contains multiple
variables of the same data type, you can declare all of them on the
same line.

integer i, tries

Note: If the variables have different data types, you must
declare them on separate lines.

Sample: Verifying the Host Connection 17

Chapter 1 Introducing CASL

Initializing
Variables

Performing a Task
While a Condition
is True

Using a Relational
Expression to
Control the
Process

Waiting for a
Character String

The macro compiler initializes an integer variable to a default
value of 0. To initialize the variable to a different value, use the
equal sign (=). In the sample macro, the i variable is initialized
to the value 1.

i=1

To execute statements repeatedly while a condition is true, use the
while...wend construct. If the condition is initially false, the
statements are not executed at all. This macro uses the
while...wend construct to control the process of connecting to
MCI Mail.

while i <=10

reply
wait 2 seconds for "port:"
if not timeout then

{
goto LOGIN
b
i=i+1
wend

The statements between the while and wend are continually
executed until the condition i <= 10 is no longer true. Then
control passes to the statement following the wend.

Expressions that use relational operators (such as < and =) are
called relational expressions. When you use these operators, the
result is always a boolean value (true or false). In this macro, the
relational expression i <= 10 is used to determine how many
times the while...wend construct is performed. As long as the
condition is true, the statements within the construct are
executed. When the condition is no longer true, the statement
following the wend is executed.

If you want your macro to wait for one specific text string, use the
wait statement. This sample macro waits for the character string
"port: " to ensure that a connection with MCI Mail is established.
To prevent the macro from waiting forever, a duration time of two
seconds is specified.

wait 2 seconds for "port:"

You can determine if a time-out occurred before the character
string arrived, as explained in the next section.

18 Sample: Verifying the Host Connection

Chapter 1 Introducing CASL

Checking if a
Timeout Occurred

Testing the
Outcome with a
Boolean
Expression

Branching to a
Different Macro
Location

Use the if...then construct and the timeout system variable to
determine the outcome of the wait statement.

if not timeout then

goto LOGIN
}
i=i+ 1l
The timeout system variable is either true or false indicating
whether the last wait statement timed out. In this macro,
timeout is true if the wait statement exceeds the time
specification of 2 seconds before finding the "port: " text string.

When you use the if...then construct, the statement(s)
following the then are executed only if the condition is true. In
this macro, the goto LOGIN statement is executed if a time-out

does not occur; if a time-out occurs, the i=i+ 1 statement is
executed.
The condition you use in an if...then statement is usually a

boolean expression. Boolean expressions return either true or
false. Your boolean expressions can be simple, as shown in this
macro:

if not timeout then

You can also use more complex expressions, involving multiple
conditions with boolean operators, as shown in the following
example:

if varl >= 12 and var2 <=5 then

In the sample macro, if the boolean expression is true, the macro
transfers control to a logon routine, which is located in a different
part of the macro, as explained in the next section.

Sometimes it is preferable to handle a certain piece of coding logic
in a separate part of a macro. To branch to this location, you can
use the goto statement.

if not timeout then

goto LOGIN
}

To enable the macro compiler to know where to branch, you must
supply a label name in the goto statement. In the sample

Sample: Verifying the Host Connection 19

Chapter 1 Introducing CASL

Continuing the
Logon if the
Connection Is
Established

Incrementing a
Counter Using an
Arithmetic
Expression

Alerting the User if
the Connection
Failed

macro, the label LOGIN is used to indicate the location where the
next logical piece of code is located. The actual location is
identified by the label statement.

label LOGIN

CASL provides another statement that allows you to branch to a
label: gosub...return . For detailed information about this
statement, refer to “gosub...return (statements)” on page 209.

If the macro receives the "port: " prompt before a time-out occurs,
it sends the logon sequence to the host, displays a message, and
ends.

label LOGIN

wait for "name:"

reply userid

wait for "password:"

reply password

message 'MCI auto-logon complete'
end

If the "port: " prompt does not arrive in time, the macro
increments the while...wend conditional counter.

The number of times the while...wend construct is performed
depends on the value in the variable i . To increment that value,
you must use an arithmetic expression. Arithmetic expressions
consist of numeric arguments and arithmetic operators. In the
sample macro, the addition operator, which is a plus sign (+), is
usedtoadd 1toi .

i=i+1

The counter continues to increment until the host sends the
character string "port: " or until the counter’s value no longer
satisfies the condition for the while...wend construct (i <=

10) . If the host does not respond, the macro alerts the user to the
failure.

In general, the sample macro uses the message statement to
inform the user of current events. A message, which is displayed
without a dialog box, does not require any user intervention and is
replaced by other messages.

20 Sample: Verifying the Host Connection

Chapter 1 Introducing CASL

Disconnecting the
Session

Using Indentation

To display information to which the user must respond, use the
alert statement. The alert statement displays a message in a
dialog box, which requires the user to choose a command to exit
the dialog box. In the sample macro, the alert statement
provides an OK button for the user.

alert "System not responding - Logon canceled.", ok

The macro pauses at the alert statement until the user clicks
OK.

If the connection with MCI Mail cannot be established, the macro
uses the bye statement to end the session. The bye statement
immediately disconnects the current session.

As you can see, some of the lines of code in the macro are indented.
For instance, the code within the while...wend loop is indented.

while i <= 10

reply
wait 2 seconds for "port:"
if not timeout then

goto LOGIN
I
i=i+1
wend
Indentation is not required, but it helps to make your macro more
readable. If indentation was not used in the sample macro, it

would be difficult to determine which lines of code applied to the
while...wend construct.

Sample: Verifying the Host Connection 21

Chapter 1 Introducing CASL

Using Braces with You can use braces to enclose one or more statements that belong

a Statement Group together. In the sample macro, braces enclose the goto statement
that follows the if...then statement, indicating that the goto
statement is part of the if...then construct.

if not timeout then

goto LOGIN
}

22 Sample: Verifying the Host Connection

Chapter 1 Introducing CASL

Sample: Controlling the Entire Logon Process

In the previous examples, the sample macros did not verify the
logon prompts sent by the host and therefore did not take
corrective action if a prompt never appeared. In this macro, you
can see how to use the watch...endwatch construct, within a
while...wend loop, to wait for any one of multiple character
strings from the host and then take appropriate action based on
the string that is received. The programming logic in this macro
gives you greater control over the sequence of events that may
occur when communicating with your host.

/* This macro shows how to display messages and
send a user ID and password to MCI Mail. It also
verifies that the MCI Mail connection is active and
uses the watch statement to verify that the logon
sequence is successfully sent to the host. */

-- Macro name: SAMPLE3.XWS

-- Created: 6/24/92 - Jane Smith

-- Modified: 6/25/92 - Jane Smith (Added code to
-- check for the "port:" prompt.)

-- Modified: 7/02/92 - John Jones (Added code to
-- check for specific logon

-- prompts.)

[* First, define the required variables. */
integer i, tries

[* Display a message on the status line to tell the
user what is going on. */

message "MCI Mail auto-logon in progress"

[* Send a carriage return until the "port:" prompt
is received. */

i=1 -- Initialize
-- variable

while i <= 10 -- Perform while i is
-- less than or equal
--t0 10

reply -- Send CR

wait 2 seconds for "port:" -- Wait for prompt

Sample: Controlling the Entire Logon Process 23

Chapter 1 Introducing CASL

if not timeout then goto LOGIN -- If no timeout,
-- branch to LOGIN
-- to check next
-- prompts
izi+1 -- Increment counter
wend

[* Could not get MCI Mail's attention. Tell the
user and hang up. */

alert "System not responding - Logon canceled.", ok

bye -- Disconnect
end -- End the macro
label LOGIN -- Branch-to location

[* Try to log on to MCI Mail for 50 seconds. If not
successful, disconnect the session and exit. */

tries=1 -- Initialize
-- variable

while online and tries < 5 -- Perform while both
-- conditions are
-- true

watch 10 seconds for -- Wait for any one

-- of the following
-- host responses
quiet 2 seconds : reply

"name:" : wait 5 ticks : reply userid
"password:" : wait 5 ticks : reply password
"sorry, inc" :wait 5 ticks : bye : ...

message "Unable to log on." : end
"COM":alarm 1 :message "MCI" + ...

"Mail auto-logon complete." : end

"call Customer Service" : ...

alert "Connection refused.", ok : end

endwatch

tries = tries + 1 -- Increment counter
wend

if tries < 5 then -- If not successful

{

bye -- Disconnect
alert "Lost the connection.”, ok -- Tell the user

}

end -- End

24 Sample: Controlling the Entire Logon Process

Chapter 1 Introducing CASL

Performing a Task
while Multiple
Conditions Are
True

Watching for One
of Several Host
Responses

As in the second sample macro, which verified the MCI Mail
connection, this macro contains the appropriate lead-in comments,
attempts to establish communications with MCI Mail, waits for
the "port: " prompt from the host, and branches to a different
location to handle the balance of the logon process. At this point,
however, this macro uses a more comprehensive technique to
ensure that it sends the correct logon responses to the host.

Based on two controlling conditions (the macro is online and
tries is less than 5), the macro repeatedly watches for one of
several host responses to arrive. If either of the two controlling
conditions becomes invalid, the logon process terminates.
Otherwise the macro responds appropriately to whichever host
prompt or message it receives.

In the previous sample macro, the while...wend construct
contained one relational expression that determined how many
times the while loop was repeated. This macro uses two conditions
to determine the duration of the loop: the result of the online
function and the result of a relational expression.

while online and tries < 5

As long as both conditions are true, the statements in the
while...wend construct are repeatedly executed. If either of the
conditions becomes false, macro execution continues with the
statement following the wend.

The online function returns true as long as the macro is online to
the host. The relational expression tries <5 returns true as
long as tries is less than 5. Since the variable tries is
initialized to 1 before the while loop and then is incremented by 1
each time the loop is executed, the while...wend construct will
be repeated a maximum of four times. It may be repeated fewer
than four times, depending on what happens while the macro is
watching for one of several host responses.

If you know that the host may send one of several different
prompts, use the watch...endwatch construct with multiple
conditions to watch for each possible prompt or message. The
sample macro watches ten seconds for six potential conditions.

Write each watch condition as a separate entity. When one of the
conditions occurs, the statements for that watch condition are
executed and the watch...endwatch construct ends. If the ten-

Sample: Controlling the Entire Logon Process 25

Chapter 1 Introducing CASL

A Quiet Connection

The "name:" Prompt

The "password:"
Prompt

second time-out expires before a watch condition is satisfied,
processing returns to the while...wend construct. If both of the
while conditions are still true, the macro executes the
watch...endwatch construct again.

You need to write the actual watch statement only once for all of
the watch conditions.

watch 10 seconds for

Each watch condition, along with its accompanying directives, is
specified individually. These conditions are discussed in the
paragraphs that follow. As you can see in this macro, the watch
conditions are followed by a colon (:). The colon is required.

The first watch condition waits for the connection to be quiet for
two consecutive seconds.

quiet 2 seconds : reply

If this condition is met, the macro sends a carriage return to MCI
Mail and processing returns to the while...wend construct. If
the macro is still online and tries is less than 5, the
watch...endwatch construct is executed again.

The second watch condition looks for the character string
"name:"

"name:" : wait 5 ticks : reply userid

If the macro receives the "name:" prompt, it waits five ticks (a
tick is one tenth of a second) and then sends the contents of
userid to MCI Mail. If the macro is still online and tries is
less than 5, the watch...endwatch construct is executed again.

If the host sends the "password: " prompt, the macro executes the
statements associated with the third watch condition.

"password:" : wait 5 ticks : reply password

After a brief wait of five ticks, the macro sends the contents of the
system variable password to MCI Mail and then processing
returns to the while...wend construct. The watch...endwatch
construct is executed again if both of the while conditions remain
true.

26 Sample: Controlling the Entire Logon Process

Chapter 1 Introducing CASL

The "sorry, inc"
Message

The "COM" Message

The "call Customer
Service" Message

Sounding an
Alarm

Using the Line-
Continuation
Sequence

The fourth watch condition looks for the character string "sorry ,
inc ".

"sorry, inc" : wait 5 ticks : bye : ...
message "Unable to log on." : end

If the macro receives this message, it waits five ticks, disconnects
the session, displays a message for the user, and ends. Processing
does not return to the while...wend construct if this character
string is received.

If the host sends the "COM message, the statements associated
with the fifth watch condition are executed.

"COM" : alarm 1 : message "MCI " + ...
"Mail auto-logon complete." : end

In this case, the macro recognizes that the logon process has
completed successfully. Therefore, it sounds an alarm to get the
user’s attention, displays an appropriate message, and ends.

If the macro receives the "call Customer Service " message, it
executes the statements associate with the last watch condition.

"call Customer Service" : ...
alert "Connection refused."”, ok : end

The macro displays a dialog box and waits for the user to click OK;
then it ends.

To get the user’s attention, you can use the alarm statement to
make the PC emit a sound. This macro uses the alarm statement,
with an argument of 1.

"COM" : alarm 1 : message "MCI " + ...
"Mail auto-logon complete." : end

The alarm statement argument determines the type of sound that
the PC makes. In this case, an argument of 1 specifies that the PC
should play the .WAYV file associated with the SystemAsterisk key
in the Windows Registry. For more information about alarm
sounds, refer to “alarm (statement)” on page 120.

To write a directive that continues on another line, you must use
the line-continuation sequence (...) at the end of the line to be
continued. You can see an example of this in the sample macro.

Sample: Controlling the Entire Logon Process 27

Chapter 1 Introducing CASL

"sorry, inc" : wait 5 ticks : bye : ...
message "Unable to log on." : end

Note: You can skip using the line continuation sequence and
keep the entire statement on one line. However, the statement
may be too long to fit in your editor window, and you will have
to scroll to the right and left to see the entire line.

If you have a string constant that is too long to fit on one line, you
can break the string into segments and use the line-continuation
sequence to indicate the string continues on another line. You
must enclose each string segment with quotation marks and use
the string concatenation operator (+) to join the strings.

"COM" : alarm 1 : message "MCI " + ...
"Mail auto-logon complete." : end

28 Sample: Controlling the Entire Logon Process

Chapter 1 Introducing CASL

Compiling a CASL Macro

Procedure

Once you have created and saved a CASL macro, you should
compile it to determine possible syntax errors. The compiler
converts your source macro into a binary, machine-readable form
and reports any errors that it detects. The compilation process
takes only a small amount of time. When you have corrected all of
the syntax errors, you can run the macro.

There are two types of macro files:
= Source file (XWS), which you create and edit
= Executable file (XWC), which is created when you compile your

macro

To compile a CASL macro, follow these steps:

If the CASL macro that you want to compile is not already open,
open it.

From an Accessory Manager session, click CASL Macro from the
Tools menu, click the desired . XWS file, and click Edit.

From the CASL Macro Editor, click Open from the File menu and
double-click the desired .XWS file.

From the Macro menu, click Compile.
If any compilation errors occur, correct the errors.

Repeat steps 2 and 3 until your macro compiles without errors.

Note: The macro compiler automatically compiles any macro
you run if the macro has not already been compiled or if the
most recent version of the source macro is newer than the
compiled version. However, you should compile your macros
before trying to run them to ensure that all syntax errors are
corrected.

Compiling a CASL Macro 29

Chapter 1 Introducing CASL

Running a CASL Macro

30

You can run macros at any of the following times:

When you start Accessory Manager (application start-up
macro)

When you open a session (session start-up macro)

When you click CASL Macro from the Tools menu, click the
desired macro, and click Run

When you click a toolbar or QuickPad button, press a key, or
double-click a HotSpot that has been configured to run a macro

When the left mouse double-click has been configured to run a
macro with the same name as the word under the mouse
pointer

When you click Run from the CASL Macro Editor’s Macro menu

For detailed information about these procedures, refer to the
online Help for Accessory Manager.

Running a CASL Macro

Understanding the
Basics of CASL

In This Chapter

This chapter includes the following headings:

Statements 32
Commentst 33
Identifiers 35
DataTypes 36
Constants 37
ExXpressionsiiiii 44
Arithmetic Expressions 46
String Expressionsiiiii e 50
Relational Expressionsc.c.c.iiiiininiinnn... 51
Boolean Expressionst 53
Type Conversionuueiiiiiieeeennnnnnnen.. 54
Compiler Directives 56
Reserved Keywords 58

31

Chapter 2 Understanding the Basics of CASL

Statements

Line Continuation
Characters

32

Statements

Statements specify an action to be taken. You can write the
statements in any of the following ways:

»= One statement to a logical line, as shown in the following
example:

activate

= Multiple statements to a logical line with a colon (:) between
each statement, as shown in the following example:

wait for "Enter user ID:" : reply userid
wait for "Enter password:" : reply password

= A series of statements enclosed in braces ({ }), as shown in the
following example:

if online then

{
reply userid
wait for "?"
reply password

}

You can continue a statement on the next line by placing line
continuation characters (...) at the end of the previous line. You
can use the line continuation sequence anywhere in a macro
except inside quotation marks. The following example shows how
to use the line continuation characters:

proc add_integers takes integer one_num, ...
integer second_num

The line continuation sequence after the word one_num indicates
that there is more information to follow.

Chapter 2 Understanding the Basics of CASL

Comments

Block Comments

Line Comments

Double Hyphens

Use comments to document your macro. Comments are useful for
maintaining, modifying, or debugging the macro in the future.

You can add two types of comments to a macro:
= Block comments

= Line comments

When you want to add a block of comments, enclose the comment
text with the symbol pair / * and */ as shown in the following
example:

[* This macro logs on to the host. First send the
host logon. Then send the user ID and password.*/

You can use block comments anywhere in a macro except in the
middle of an identifier (such as a function or variable name) or
inside a string constant. You can even nest comments in a block
comment; the macro processor sorts out the pairs correctly.

Be careful when using block comments, however. If you fail to
terminate the block comment correctly, the compiler will treat
every statement in the rest of the macro as part of the block
comment.

Use line comments when your comment text is brief. Line
comments do not require a matching end-of-comment symbol.
There are two types of line comments:

= Double hyphens (--)

= Semicolon (;).

Note: Use double hyphens for your line comments because the
semicolon has special meaning for some of the CASL elements,
such as the print statement. The semicolon comment indicator
is supported only for backward compatibility.

When you use the double-hyphen indicator, any characters that
follow the hyphens, through the end of the line, are considered
comment text. Since double hyphens are used only to designate a

Comments 33

Chapter 2 Understanding the Basics of CASL

Semicolon

34

Comments

comment, you can use them anywhere (except in the middle of
identifiers or string constants).

The following is an example of a double-hyphen comment:

-- Macro name: HELLO.XWS
-- Date: 12-18-92

Use the semicolon indicator only in a location where you would
normally place a CASL statement, as shown in the following
examples:

print "Hi," : ; This is a comment

reply userid
; Send your user ID to the host

Chapter 2 Understanding the Basics of CASL

|dentifiers

Each variable, procedure, function, label, and other type of
element used in a macro must have a unique name, referred to as
an identifier.

An identifier can be any length up to 128 characters. The first
character must be alphabetic, or one of the following special
characters: $, %, or _. The remaining characters can be alphabetic
characters, special characters, or numbers; spaces cannot be used.
Identifier names are not case-sensitive.

Unlike in some other programming languages (for example,
BASIC), using the percent (%) or dollar ($) symbol in a variable
name does not force the variable to be a particular data type.
CASL determines the data type of a variable from the keyword
used in its explicit declaration or from the type of expression
assigned to it in an implicit declaration. Refer to Chapter 3,
“Variables, Arrays, Procedures, and Functions,” for more
information on variable declarations.

Note: Do not use the same identifier for different elements (for

example, do not identify a variable with the same name
assigned to a procedure). Duplicate identifiers are an error.

Identifiers 35

Chapter 2 Understanding the Basics of CASL

Data Types

36

Data Types

CASL supports the following data types:

Data Type

Description

Integer

The integer data type represents positive and negative
numbers. Internally, integers are stored as 32-bit signed
integers, so values between -2,147,483,648 and
2,147,483,647 are possible.

Real

The real data type represents positive and negative floating
point numbers. Internally, reals are stored as 4-byte |IEEE
floating point numbers, consisting of a sign bit, an 8-bit excess
127-bit binary exponent, and a 23-bit mantissa. The range of
possible values is approximately 3.4E-38 to 3.4E+38.

String

The string data type represents variable length strings. A null
string has zero length. The maximum length of any string is
32,767 characters.

A string variable has a particular length at any given time, but
the length can change when a new value is assigned to the
variable. The new length can be longer or shorter than the
original length of the string.

Boolean

The boolean data type represents true or false values.

Byte

The byte data type consists of unsigned, non-fractional values
of 0 (zero) to 255. It is often preferable to use bytes, rather
than integers, in arrays because bytes require less memory
than integers.

Word

The word data type consists of unsigned, non-fractional
values from O (zero) to 65,535. As with the byte data type, you
may find it preferable to set up your arrays using words, rather
than integers.

Char

The char data type consists of a single-character string that
can be assigned as strings or bytes.

Array

The array data type consists of multiple elements of a data
type. You can have an array of integers, reals, strings,
booleans, bytes, words, or chars.

Note: For type-checking purposes, integer, byte, and word are
all considered integers.

Chapter 2 Understanding the Basics of CASL

Constants

Integer Constants

Decimal Integers

Hexadecimal
Integers

A CASL constant can be one of the following four types:
= Integer

= Real

= String

= Boolean

Integer constants have one of the following formats:

[[] digit .. Decimal integers
[[1 digit ..{h|H} Hexadecimal integers
[[] digit ..{o]0O]|q|Q} Octalintegers

[[] digit ..{b|B} Binary integers

[1 digit ..{k|K} Kilo integers

Decimal inte